RAS PhysicsДефектоскопия Russian Journal of Nondestructive Testing

  • ISSN (Print) 0130-3082
  • ISSN (Online) 3034-4980

INFLUENCE OF THE SIZE OF FLAT OBJECTS ON THE MEASUREMENTS OF MAGNETIC CHARACTERISTICS USING AN ATTACHABLE TRANSDUCER

PII
S30344980S0130308225080074-1
DOI
10.7868/S3034498025080074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 8
Pages
66-69
Abstract
The results of measurements of static magnetic characteristics using attachable transducers depend on the geometry of the test object and magnetic flux leakage, which requires additional study. The aim of the work was to analyze the influence of flat object dimensions and magnetic flux leakage on the results of measurements using attachable transducers. By the example of steel 3 specimens with different sizes, the change of static magnetic characteristics when varying the position of the transducer relative to the edge of the specimens was studied using the DIUS hardware and software system. The results revealed a paradoxical behavior: an increase in the maximum magnetic induction in the transducer was accompanied by a decrease in the field strength in the object, which is explained by the leakage of magnetic flux in the samples with a larger area. It was found that the edge effect and the geometry of the object significantly affect the measured parameters, including the coercive force by demagnetization current, which is used by most modern coerciometers. A possible way to solve this problem is to create regression models, including machine learning methods, to correct the influence of scattering and improve the accuracy of measurements in the conditions of varying the geometry of control objects.
Keywords
коэрцитивная сила остаточная магнитная индукция магнитный структурный анализ измерения структуроскоп рассеяние магнитного потока
Date of publication
03.07.2025
Year of publication
2025
Number of purchasers
0
Views
38

References

  1. 1. Неразрушающий контроль. Справочник: В 8 т. / Под общ. ред. В.В. Клюева. Т. 6: В 3 кн. Кн. 1. Клюев В.В., Мужицкий В.Ф., Торкунов Э.С., Щербинин В.Е. Магнитные методы контроля. Кн. 2. Филинов В.Н., Кеткович А.А., Филинов М.В. Оптический контроль. Кн. 3. Матвеев В.И. Радиоволновой контроль. 2-е изд., испр. М.: Машиностроение, 2006. 848 с.
  2. 2. Вонсовский С.В., Михеев М.Н. Магнитный структурный анализ // Заводская лаборатория. 1957. № 10. С. 1221—1226. Библиогр. с. 1226 (53 назв.).
  3. 3. ГОСТ 8.377—80 Государственная система обеспечения единства измерений. Материалы магнитомягкие. Методика выполнения измерений при определении статических магнитных характеристик.
  4. 4. IEC 60404-4:1995/AMD2-2008 Amendment 2 — Magnetic materials — Part 4: Methods of measurement of d.c. magnetic properties of magnetically soft materials.
  5. 5. Костин В.Н., Василенко О.Н., Бызов А.В. Мобильная аппаратно-программная система магнитной структуроскопии DIUS-1.15M // Дефектоскопия. 2018. № 9. С. 47—53.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library