RAS PhysicsДефектоскопия Russian Journal of Nondestructive Testing

  • ISSN (Print) 0130-3082
  • ISSN (Online) 3034-4980

Ultrasonic Evaluation of Residual Stresses in AISI 316Ti Steel Specimen after Laser Shock Peening

PII
S30344980S0130308225040028-1
DOI
10.7868/S3034498025040028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
16-28
Abstract
Residual stresses induced by laser shock peening in the near-surface layer in AISI 316Ti austenitic stainless steel specimen were measured by ultrasonic technique using critically refracted longitudinal waves. The results of ultrasonic measurements were compared with the results obtained by hole drilling method. The values of the residual stresses induced by laser shock peening, the initial residual stresses in the rolled sheet and the yield strength of the material were compared. The thermal stability of laser-induced residual stresses after annealing the specimen for 5 hours at the temperature of 200 °C and re-annealing for 5 hours at the temperature of 280 °C was investigated. The results of study were analyzed taking into account the accepted assumptions, limitations and uncertainties. The structure near the untreated and laser-treated surface was studied using optical and scanning electron microscopes. The directions of further studies for the development of nondestructive technique for ultrasonic evaluation of residual stresses induced by laser shock peening of the surface were proposed.
Keywords
ультразвуковой контроль приповерхностных остаточных напряжений продольная критически преломленная волна деформационное упрочнение поверхности лазерное ударное упрочнение метод сверления отверстий аустенитная нержавеющая сталь
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
99

References

  1. 1. Tsuji N., Tanaka S., Takasugi T. Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti—6Al—4V alloy // Surf. Coat. Technol. 2009. V. 203. P. 1400—1405. DOI: https://doi.org/10.1016/j.surfcoat.2008.11.013
  2. 2. Mapelli C., Manes A., Giglio M., Mombelli D., Giudici L., Baldizzone C., Gruttadauria A. Survey about effects of shot peening conditions on fatigue performances of Ti–6Al–4V mechanical specimens featured by different cross-section geometries // Mater. Sci. Technol. 2012. V. 28 (5). P. 543—548. DOI: https://doi.org/10.1179/1743284711Y.0000000096
  3. 3. Sandá A., García Navas V., Gonzalo O. Surface state of Inconel 718 ultrasonic shot peened: Effect of processing time, material and quantity of shot balls and distance from radiating surface to sample // Mater. Des. 2011. V. 32. P. 2213—2220. DOI: https://doi.org/10.1016/j.matdes.2010.11.024
  4. 4. Kumar S., Chattopadhyay K., Singh V. Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy // J. Alloys Compd. 2017. V. 724. P. 187—197. DOI: https://doi.org/10.1016/j.jallcom.2017.07.014
  5. 5. Prevey P.S., Ravindranath R.A., Shepard M., Gabb T. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications // ASME. 2003. DOI: https://doi.org/10.1115/1.1807414
  6. 6. Zhang Q., Ye Y., Yang Y., Zhang L., Huang T., Dong Y., Vasudevan V.K., Ye C., Ding H. Review of low-plasticity burnishing and its applications // Adv. Eng. Mater. 2022. V. 24. No. 11. Art. 2200365. DOI: https://doi.org/10.1002/adem.202200365
  7. 7. Ширяев А.А., Миленин А.С. Влияние методов упрочнения на усталостную прочность лопаток компрессора с концентраторами напряжений // Известия высших учебных заведений. Машиностроение. 2024. № 9. C. 72—81.
  8. 8. Montross C. S., Wei T., Lin Y., Clark G., Mai Y.W. Laser shock processing and its effects on microstructure and properties of metal alloys: a review // Int. J. Fatigue. 2002. V. 24. P. 1021—1036. DOI: https://doi.org/10.1016/S0142-1123 (02)00022-1
  9. 9. Ding K., Ye L. Laser Shock Peening: Performance and Process Simulation. UK, Cambridge: Woodhead Publishing Ltd., 2006. 162 p.
  10. 10. Gachegova E.A., Sikhamov R., Ventzke V., Kashaev N., Plekhov O.A. Influence of laser shock peening on low- and high-cycle fatigue of an OT4-0 titanium alloy // J. Appl. Mech. Tech. Phy. 2022. V. 63. P. 335—342. https://doi.org/10.1134/S0021894422020171
  11. 11. Zhelnin M., Kostina A., Iziumova A., Vshivkov A., Gachegova E., Plekhov O., Swaroop S. Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening // Frattura ed Integrità Strutturale. 2023. V. 65. P. 100—111. https://doi.org/10.3221/IGF-ESIS.65.08
  12. 12. Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. Methods of measuring residual stresses in components // J. Mater. Des. 2012. V. 35. P. 572—88.
  13. 13. Hughes D.S., Kelly J.L. Second-Order Elastic Deformation of Solids// Phys. Rev. 1953. V. 92. No. 5. P. 1145—1149. https://doi.org/10.1103/PhysRev.92.1145
  14. 14. Никитина Н.Е. Акустоупругость. Опыт практического применения. Нижний Новгород: ТАЛАМ, 2005. 208 с. (In English: Nikitina N.Ye. Acoustoelasticity — experience of practical use. Nizhny Novgorod: TALAM, 2005. 208 p.)
  15. 15. Анисимов В.А., Каторгин Б.И., Куценко А.Н.,Малахов В.П., Рудаков А.С., Чванов В.К. Акустическая тензометрия / Клюев В.В. (ред.) Неразрушающий контроль. Справочник. М.: Машиностроение, 2006. Т. 4. 736 с.
  16. 16. Egle D.M., Bray D.E. Measurement of acoustoelastic and third-order elastic constants for rail steel // J. Acoust. Soc. Am. 1976. V. 60. No. 3. P. 741—744. https://doi.org/10.1121/1.381146
  17. 17. Song W., Xu C., Pan Q., Song J. Nondestructive testing and characterization of residual stress field using an ultrasonic method // Chin. J. Mech. Eng. 2016. V. 29. P. 365—37. https://doi.org/10.3901/CJME.2015.1023.126
  18. 18. Kurashkin K.V., Kirillov A.G., Gonchar A.V. Use of longitudinal critically refracted waves to determine residual and temperature stresses in rails // Acoustical Physics. 2024. V. 70. No. 1. P. 51—57.
  19. 19. Разыграев Н.П. Физика, терминология и технология в ультразвуковой дефектоскопии головными волнами // Дефектоскопия. 2020. № 9. С. 3—19. DOI: 10.31857/S0130308220090018
  20. 20. Javadi Yashar, Akhlaghi Mehdi, Najafabadi Mehdi Ahmadi. Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates // Materials & Design. 2013. V. 45. P. 628—642. https://doi.org/10.1016/j.matdes.2012.09.038
  21. 21. Liu Y., Liu E., Chen Y., Wang X., Sun C., Tan J. Study on Propagation Depth of Ultrasonic Longitudinal Critically Refracted (LCR) Wave // Sensors. 2020. V. 20. P. 5724. https://doi.org/10.3390/s20195724
  22. 22. Быченок В.А., Кинжагулов И.Ю., Беркутов И.В., Марусин М.П., Щерба И.Е. Применение лазерно-ультразвукового генератора для определения напряженно-деформированного состояния специальных материалов изделий // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 4 (86). C. 107—114.
  23. 23. Karabutov A.A., Podymova N.B., Cherepetskaya E.B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method // J. Appl. Mech. Tech. Phy. 2017. V. 58. No. 3. P. 503—510. https://doi.org/10.1134/S0021894417030154
  24. 24. Marusina M.Y., Fedorov A.V., Bychenok V.A., Berkutov I.V. Ultrasonic Laser Diagnostics of Residual Stresses // Meas. Tech. 2015. V. 57. P. 1154—1159. https://doi.org/10.1007/s11018-015-0595-4
  25. 25. ASTM — A240/A240M Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
  26. 26. Gonchar A., Solovyov A., Klyushnikov V. Ultrasonic Study of Longitudinal Critically Refracted and Bulk Waves of the Heat-Affected Zone of a Low-Carbon Steel Welded Joint under Fatigue // Acoustics. 2024. No. 6. P. 593—609. https://doi.org/10.3390/acoustics6030032
  27. 27. Haibo Liu, Yapeng Li, Te Li, Xiang Zhang, Yankun Liu, Kuo Liu, Yongqing Wang. Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave // Applied Acoustics. 2018. V. 141. P. 178—187. https://doi.org/10.1016/j.apacoust.2018.07.017
  28. 28. Tanala E., Bourse G., Fremiot M., De Belleval J.F. Determination of near surface residual stresses on welded joints using ultrasonic methods // NDT & E International. 1995. V. 28. Is. 2. P. 83—88. https://doi.org/10.1016/0963-8695 (94)00013-A
  29. 29. Khlybov A.A., Uglov A.L., Rodyushkin V.M., Katasonov Y.A., Katasonov O.Y. The determination of mechanical stresses using rayleigh surface waves excited by a magnetoacoustic transducer // Russian Journal of Nondestructive Testing. 2014. V. 50. No. 12. P. 701—707.
  30. 30. ГОСТ Р 71316—2024. Аддитивные технологии. Изделия, полученные методами аддитивных технологий. Определение остаточных напряжений методом сверления отверстия. М.: Российский институт стандартизации, 2024.
  31. 31. ASTM International. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, 2013.
  32. 32. Schajer G.S. Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method. Part I — Stress Calculation Procedures // J. Eng. Mater. Technol. 1988. V. 110. P. 338—343. https://doi.org/10.1115/1.3226059
  33. 33. Corrêa Fábio Junkes, Alves Jahnert Frederico, Pereira Tomás Jucélio. Residual stress profile determination by the hole-drilling method with calibration coefficients obtained using FEM // J. Theor. Appl. Mech. 2021. V. 59. P. 661—673. https://doi.org/10.15632/jtam-pl/141686
  34. 34. Гончар А.В., Клюшников В.А., Мишакин В.В. Влияние пластического деформирования и последующей термообработки на акустические и электромагнитные свойства стали 12Х18Н10Т // Заводская лаборатория. Диагностика материалов. 2019. Т. 85. № 2. С. 23—28.
  35. 35. Мишакин В.В., Гончар А.В., Клюшников В.А., Курашкин К.В., Фомин А.Е., Сергеева О.А. Контроль состояния циклически деформируемых нержавеющих сталей акустическим и вихретоковым методами // Измерительная техника. 2021. № 2. С. 62—67.
  36. 36. Pereira P., Santos A.A. Influence of Anisotropy Generated by Rolling on the Stress Measurement by Ultrasound in 7050 T7451 Aluminum // Exp. Mech. 2013. V. 53. P. 415—425. https://doi.org/10.1007/s11340-012-9647-8
  37. 37. Uglov A.L., Khlybov A.A. On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method // Russian Journal of Nondestructive Testing. 2015. V. 51. No. 4. P. 210—216.
  38. 38. Вэньтун Чжао, Бин Чжоу, Вэньруй Бай, Чжаньюн Ван. Ультразвуковой метод одновременного контроля остаточных напряжений и толщины изделия // Дефектоскопия. 2024. № 11. C. 30—45.
  39. 39. Marusina M.Y., Fedorov A.V., Bychenok V.A.,Berkutov I.V. Evaluation of the Influence of External Factors in Ultrasonic Testing of Stress-Strain States // Meas Tech. 2017. V. 59. P. 1165—1169. https://doi.org/10.1007/s11018-017-1109-3
  40. 40. Mironov S., Ozerov M., Kalinenko A., Stepanov N., Salishchev G., Zherebtsov S., Plekhov O., Sikhamov R., Ventzke V., Kashaev N., Semiatin L. On the relationship between microstructure and residual stress in laser-shock-peened Ti-6Al-4V // Journal of Alloys and Compounds. 2022. V. 900. P. 163383.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library