- PII
- S30344980S0130308225030042-1
- DOI
- 10.7868/S3034498025030042
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 3
- Pages
- 47-58
- Abstract
- Indirect-drive cryogenic target is a located in box-converter hollow spherical shell-capsule with spherically symmetric solid layer of deuterium-tritium fuel on its inner surface. Placing a cryogenic target in an experiment on ignition at a megajoule energy level facility is preceded by thorough characterization of all component elements of the target and characterization of finished target. This paper describes the characterization method of the entire external surface of the cryogenic target using a confocal scanning, and presents the results of developing an optical shadow method and an X-ray phase-contrast method for characterization the cryogenic fuel layer in the target. The results of stitching the entire external surface are used for interpretation of the results of experiments on the solid fuel layer formation in a cryogenic target. The developed program system for characterization of fuel layers is used for measuring the liquid fuel, for characterization of the solid fuel layer parameters and for evaluation the robustness of the characterization results.
- Keywords
- оболочка капсула криогенный слой конфокальная микроскопия оптическая теневая диагностика рентгеновская диагностика с фазовым контрастом
- Date of publication
- 01.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 50
References
- 1. Ильгисонис В. Термоядерные исследования как существенная составляющая технологической платформы энергетической безопасности // Энергетическая политика. 2023. Т. 2. № 180. DOI: 10.46920/2409-5516_2023_2180_12
- 2. Ильгисонис В.И., Ильин К.И., Новиков С.Г., Оленин Ю.А. О программе российских исследований в области управляемого термоядерного синтеза и плазменных технологий // Физика плазмы. 2021. Т. 47. № 11. С. 963—969. DOI: 10.31857/S0367292121110172
- 3. Danson C.N., Gizzi L.A. Inertial confinement fusion ignition achieved at the National Ignition Facility — an editorial // High Power Laser Science and Engineering. 2023. V. 11. No. 40. DOI:10.1017/hpl.2023.38
- 4. Huang H., Stephens R.B., Nikroo A., Eddinger S.A., Chen K.C., Xu H.W., Moreno K.A., Youngblood K.P., Skelton M. Quantitative radiography: Film Model Calibration and Dopant/Impurity Measurement in ICF Ablators // Fusion Science and Technology. 2007. V. 51. No. 4. P. 530—538. DOI: 10.13182/FST51-530
- 5. Biener J., Ho D.D., Wild C., Woerner E., Woerner E., Biener M.M., El-dasher B.S., Hicks D.G., Eggert J.H., Celliers P.M., Collins G.W., Teslich N.E., Kozioziemski B.J., Haan S.W., Hamza A.V. Diamond spheres for inertial confinement fusion // Nucl. Fusion. 2009. V. 49. P. 112001.
- 6. Xianxian Ma, He Ni, Mengshuang Lu, Zihao Liu, Jingwen Huang, Qi Wangb, Yun Wang. A measurement method for three-dimensional inner and outer surface profiles and spatial shell uniformity of laser fusion capsule // Optics and Laser Technology. 2021. V. 134. P. 106601.
- 7. Tianliang Yan, Kai Wang, Zhongming Zang, An Lu, Xiaobo Hu, Nan Chen, Huxiang Zhang, Chong Liu, Dong Liu. Compact, snapshot and triple-wavelength system for ICF target ice-layer refractive index and thickness measurement // Optics and Laser Technology. 2021. V. 134. P. 106595.
- 8. Nikitenko A.I., Tolokonnikov S.M. Optimal “Tomography” of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images // Fusion Science and Technology. 2007. V. 51. No. 4. P. 705—716. DOI: 10.13182/FST07-A1468
- 9. Kucheev S.O., Hamza A.V. Condensed hydrogen for thermonuclear fusion // J. Appl. Phys. 2010. V. 108. P. 091101.
- 10. Haan S.W., Lindl J.D., Callahan D.A., Clark D.S., Salmonson J.D., Hammel B.A., Atherton L.J., Cook R.C., Edwards M.J., Glenzer S., Hamza A.V., Hatchett S.P., Herrmann M.C., Hinkel D.E., Ho D.D., Huang H., Jones O.S., Kline J., Kyrala G., Landen O.L., MacGowan B.J., Marinak M.M., Meyerhofer D.D., Milovich J.L., Moreno K.A., Moses E.I., Munro D.H., Nikroo A., Olson R.E., Peterson K., Pollaine S.M., Ralph J.E., Robey H.F., Spears B.K., Springer P.T., Suter L.J., Thomas C.A., Town R.P., Vesey R., Weber S.V., Wilkens H.L., Wilson D.C. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility // Physics of Plasmas. 2011. V. 18. P. 051001. DOI: 10.1063/1.3592169
- 11. Narang Simon. Modeling for Direct Drive Fusion Implosions: Cryogenic Target Filling at Arbitrary Viewing Angles and Yield Prediction. Pittsford, New York: Sutherland High School, 2019.
- 12. Parham T., Kozioziemski B., Atkinson D., Baisden P., Bertolini L., Boehm K., Chernov A., Coffee K., Coffield F., Dylla-Spears R., Edwards O., Fair J., Fedorov M., Fry J., Gibson C., Haid B., Holunga D., Kohut T., Lewis T., Malsbury T., Mapoles E., Sater J., Skulina K., Trummer D., Walters C. Cryogenic Target System for Hydrogen Layering / American Nuclear Society Scientific Publication. 2016. LLNL-JRNL-696377.
- 13. Harding D.R., Wittman M.D., Edgell D.H. Considerations and Requirements for Providing Cryogenic Targets for Direct-Drive Inertial Fusion Implosions at the National Ignition Facility, Fusion Science and Technology // Fusion Science and Technology. 2013. V. 63. No. 2. P. 95—105.
- 14. Kozioziemski B.J., Mapoles E.R., Sater J.D., Chernov A.A., Moody J.D., Lugten J.B., Johnson M.A. Deuterium-Tritium Fuel Layer Formation for the National Ignition Facility // Fusion Science and Technology. 2011. V. 59. No. 1. P. 14—25.
- 15. Kozioziemski B.J., London R.A., McEachern R.L., and Bittner D.N. Demonstration of symmetry control of infrared heated deuterium layers in holraums. 2003. UCRL-JC-154640.
- 16. Cryogenic Target Handling System Operation Manual / Volume IV–CTHS Description, Chapter 8: Characterization Station (CS) — Revision A. 2004.
- 17. Numerical Investigation of Characterization of Thick Cryogenic-Fuel Layers Using Convergent Beam Interferometry / LLE Review. V. 79. P. 131—138.
- 18. Harding D.R., Wittman M.D., Redden N.P., Edgell D.H., Ulreich J. Comparison of Shadowgraphy and X-Ray Phase Contrast Methods for Characterizing a DT Ice Layer in an Inertial Confinement Fusion Target // Fusion Science and Technology. 2020. DOI: 10.1080/15361055.2020.1812990
- 19. Гаранин С.Г., Гарнов С.В., Сергеев А.М., Хазанов Е.А. Мощные лазеры для физики высоких плотностей энергии // Вестник Российской академии наук. 2021. Т. 9. № 5. С. 435—445.
- 20. Аверин М.С., Баранова А.С., Бусалов А.А., Гнутов А.С., Ермакова И.Ю., Ляпин В.В. Алгоритм переноса поверхностной сетки при подготовке расчетных сеток для тонкостенных конструкций / Молодежь в науке: сборник докладов XXI научно-технической конференции. 2024.
- 21. Clark D.S., Haan S.W., Hammel B.A., Salmonson J.D., Callahan D.A., Town R.P. Phys. Plasmas / 2010. 17 (052703).
- 22. LMJ & PETAL Status and first experiments // IOP Publishing. Journal of Physics: Conference Series. 2016. V. 717. P. 012084. DOI:10.1088/1742-6596/717/1/012084
- 23. Зарубина Е.Ю., Рогожина М.А., Чугров И.А. Получение криогенной мишени непрямого облучения с твердым слоем дейтерия // ВМУ. Серия 3. Физика. Астрономия. 2024. V. 79. No. 1. P. 2410401. [Zarubina E.Yu., Rogozhina M.A., Chugrov I.A. Creation of the Indirect-Drive Cryogenic Target with the Solid Deuterium Layer // Moscow University Physics Bulletin. 2024. V. 79. No. 1. P. 25—38.]
- 24. Eddinger S.A., Huang H., Schoff M.E. Three-Dimensional Wallmapping Using Xradia with Distortion Correction // Fusion Sci. Technol. 2009. V. 55. No. 4. P. 411—416.
- 25. Stephens R. B., Olson D., Huang H., Gibson J. B. Complete Surface Mapping of ICF Shells // Fusion Science and Technology. 2004. V. 45. No. 2. P. 210—213. DOI: 10.13182/FST45-210
- 26. Antipa N.A., Baxamusa S.H., Buice E.S., Conder A.D., Emerich M.N., Flegel M.S., Heinbockel C.L., Horner J.B., Fair J.E., Kegelmeyer L.M., Koh E.S., Johnson M.A., Maranvill W.L., Meyer J.S., Montesanti R., Nguyen J., Ralph J.E., Reynolds J L. & Senecal J.G. Automated ICF Capsule Characterization Using Confocal Surface Profilometry // Fusion Sci. Technol. 2013. V. 63. No. 2. P. 151—159.
- 27. Huang H., Carlson L. C., Requieron W., Rice N., Hoover D., Farrell M., Goodin D., Nikroo A., Biener J., Stadernann M., Haan S.W., Ho D., Wild C. Quantitative Defect Analysis of Ablator Capsule Surfaces Using a Leica Confocal Microscope and a High-Density Atomic Force Microscope // Fusion Sci. Technol. 2016. V. 70. No. 2. P. 377—38.
- 28. Chobriat A., Raphaël O., Hermerel C., Busvelle E., Choux A., Merillot P., Reverdy L., Theobald M. Developments in Shell Surface Characterizations Using Holography // Fusion Sci. Technol. 2018. V. 73. No. 2. P. 132—138.
- 29. Nguyen Q.L., Eddinger S.A., Huang H., Johnson M.A., Lee Y.T., Montesanti R.C., Moreno K.A., Schoff M.E. Increasing the Throughput of Phase-Shifting Diffraction Interferometer for Quantitative Characterization of ICF Ablator Capsule Surfaces // Fusion Science and Technology. 2009. V. 55. No. 4. P. 399—404. DOI: 10.13182/FST09-18
- 30. Рогожина М.А., Зарубина Е.Ю., Чугров И.А. Диагностика параметров криогенного слоя изотопов водорода в мишени непрямого облучения / Взаимодействие изотопов водорода с конструкционными материалами. IHISM’23 Junior: сб. докладов 16-й Международной школы молодых ученых и специалистов им. А. А. Курдюмова. 2023. P. 369—378.
- 31. Зарубина Е.Ю., Рогожина М.А., Чугров И.А. Диагностика параметров слоя изотопов водорода в криогенной мишени непрямого облучения для лазерного термоядерного синтеза // ФИЗМАТ. 2024. V. 2. No. 2. P. 134—154.
- 32. Zarubina E.Yu., Rogozhina M.A. Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion // Physics of Atomic Nuclei. 2022. V. 5. No. 10. P. 1638—1641. DOI: 10.1134/S1063778822100659