Для моделирования волнового поля ультразвукового преобразователя в материалах с сильной анизотропией (монокристаллические сплавы турбинных лопаток, композиты, сварные соединения и др.) строится физически наглядное асимптотическое представление для квазисферических объемных волн, возбуждаемых поверхностным источником колебаний в полупространстве с произвольной анизотропией упругих свойств. Асимптотика получена методом стационарной фазы из интегрального представления решения в виде контурных интегралов обратного преобразования Фурье. Особенности ее вывода и численной реализации обсуждаются на примере трансверсально-изотропного композитного материала и монокристаллического сплава никеля с кубической анизотропией. Зависимость стационарных точек от направления здесь сложнее, чем в изотропном случае, вплоть до появления множественных стационарных точек и складок, дающих дополнительные волновые фронты и каустики. Проводится сравнение с характеристиками плоских волн, которые описываются собственными решениями классического уравнения Кристоффеля. Показано, что несмотря на явление множественности волновых фронтов, варьирование ориентацией плоских волн позволяет получить те же векторы групповой скорости, что и у каждой из волн, описываемых асимптотикой.
Метод цифровой фокусировки апертуры (ЦФА) широко используется для получения изображения отражателей при проведении УЗК. Достоверность контроля определяется качеством ЦФА-изображения — разрешающей способностью и отношением сигнал/шум. Для достижения сверхразрешения эхосигналов, что приведет к лучевому сверхразрешению ЦФА-изображения отражателей, используются различные методы: метод максимальной энтропии, деконволюция Бернулли—Гаусса, деконволюция Люси—Ричардсона, методы распознавания со сжатием (CS), методы построения авторегрессивных моделей сигналов и т.д. Для применения этих методов нужно знать импульсный отклик системы ультразвукового контроля. Его можно измерить, но можно воспользоваться методами «слепой» деконволюции, которые применяются при обработке изображений и сигналов. Например, метод устранения смаза камеры при ее случайном смещении, максимальная коррелированная деконволюция куртозиса (MCKD), кепстральный анализ и т.д. В статье рассмотрен метод кепстрального анализа с целью получения сверхразрешения или для получения информации об импульсном отклике системы, который позволит построить AR-модель спектра для получения лучевого сверхразрешения ЦФА-изображения. Работоспособность предложенного метода подтверждена модельными экспериментами.
При проведении ультразвукового контроля (УЗК) для восстановления изображения отражателей все чаще применяют метод цифровой фокусировки апертуры (ЦФА). Достоверность контроля определяется качеством ЦФА-изображения — отношением сигнал/шум, возможность восстановить изображение всей границы отражателя и разрешающей способностью. Для достижения сверхразрешения эхосигналов используются различные способы: метод максимальной энтропии, методы построения авторстрессионных моделей сигналов, метод распознавания со сжатием (CS) и т.д. Для использования этих методов важно знать импульсный отклик системы УЗК, который можно измерить или получить с помощью методов «слепой» деконволюции, применяемых при обработке изображений и сигналов. В статье рассматривается метод минимальной энтропийной деконволюции (Minimum Entropy Deconvolution, MED) для оценки импульсного отклика ультразвукового дефектоскопа и достижения эффекта сверхразрешения изображений, где знание передаточной функции системы критично. Эффективность предложенного метода подтверждают результаты модельных экспериментов.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации