Для моделирования волнового поля ультразвукового преобразователя в материалах с сильной анизотропией (монокристаллические сплавы турбинных лопаток, композиты, сварные соединения и др.) строится физически наглядное асимптотическое представление для квазисферических объемных волн, возбуждаемых поверхностным источником колебаний в полупространстве с произвольной анизотропией упругих свойств. Асимптотика получена методом стационарной фазы из интегрального представления решения в виде контурных интегралов обратного преобразования Фурье. Особенности ее вывода и численной реализации обсуждаются на примере трансверсально-изотропного композитного материала и монокристаллического сплава никеля с кубической анизотропией. Зависимость стационарных точек от направления здесь сложнее, чем в изотропном случае, вплоть до появления множественных стационарных точек и складок, дающих дополнительные волновые фронты и каустики. Проводится сравнение с характеристиками плоских волн, которые описываются собственными решениями классического уравнения Кристоффеля. Показано, что несмотря на явление множественности волновых фронтов, варьирование ориентацией плоских волн позволяет получить те же векторы групповой скорости, что и у каждой из волн, описываемых асимптотикой.
Метод цифровой фокусировки апертуры (ЦФА) широко используется для получения изображения отражателей при проведении УЗК. Достоверность контроля определяется качеством ЦФА-изображения — разрешающей способностью и отношением сигнал/шум. Для достижения сверхразрешения эхосигналов, что приведет к лучевому сверхразрешению ЦФА-изображения отражателей, используются различные методы: метод максимальной энтропии, деконволюция Бернулли—Гаусса, деконволюция Люси—Ричардсона, методы распознавания со сжатием (CS), методы построения авторегрессивных моделей сигналов и т.д. Для применения этих методов нужно знать импульсный отклик системы ультразвукового контроля. Его можно измерить, но можно воспользоваться методами «слепой» деконволюции, которые применяются при обработке изображений и сигналов. Например, метод устранения смаза камеры при ее случайном смещении, максимальная коррелированная деконволюция куртозиса (MCKD), кепстральный анализ и т.д. В статье рассмотрен метод кепстрального анализа с целью получения сверхразрешения или для получения информации об импульсном отклике системы, который позволит построить AR-модель спектра для получения лучевого сверхразрешения ЦФА-изображения. Работоспособность предложенного метода подтверждена модельными экспериментами.
При проведении ультразвукового контроля (УЗК) для восстановления изображения отражателей все чаще применяют метод цифровой фокусировки апертуры (ЦФА). Достоверность контроля определяется качеством ЦФА-изображения — отношением сигнал/шум, возможность восстановить изображение всей границы отражателя и разрешающей способностью. Для достижения сверхразрешения эхосигналов используются различные способы: метод максимальной энтропии, методы построения авторстрессионных моделей сигналов, метод распознавания со сжатием (CS) и т.д. Для использования этих методов важно знать импульсный отклик системы УЗК, который можно измерить или получить с помощью методов «слепой» деконволюции, применяемых при обработке изображений и сигналов. В статье рассматривается метод минимальной энтропийной деконволюции (Minimum Entropy Deconvolution, MED) для оценки импульсного отклика ультразвукового дефектоскопа и достижения эффекта сверхразрешения изображений, где знание передаточной функции системы критично. Эффективность предложенного метода подтверждают результаты модельных экспериментов.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation