RAS PhysicsДефектоскопия Russian Journal of Nondestructive Testing

  • ISSN (Print) 0130-3082
  • ISSN (Online) 3034-4980

THREE-DIMENSIONAL MODELLING OF VISIBLE RADIATION PROPAGATION THROUGH CRYOGENIC TARGET WITH HARMONIC PERTURBATIONS OF SHELL AND SOLID FUEL LAYER

PII
S30344980S0130308225110041-1
DOI
10.7868/S3034498025110041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 11
Pages
44-52
Abstract
An indirect-drive cryogenic target is a hollow spherical shell-capsule with solid layer of hydrogen isotopes (fuel) on its inner surface, located in a box-converter which in turn is mounted in a cryostat to provide for operation at a cryogenic temperature. Before placing a target in an ignition experiment at a megalpoule energy level facility a thorough characterization of all component elements of the target and of the finished target must be completed. This paper describes three-dimensional modelling of a visible radiation beam propagation through a cryogenic target to study the robustness of optical shadow method for characterization of a solid fuel layer in an optically transparent shell in the presence of harmonic perturbations of various orders and amplitudes of the shell and fuel layer surfaces, as well as under non-ideal experimental conditions.
Keywords
лазерный термоядерный синтез инерционный термоядерный синтез термоядерная мишень криогенная мишень капсула криогенный слой топливо оптическая теневая диагностика
Date of publication
19.12.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Ильгисонис В. Термоядерные исследования как существенная составляющая технологической платформы энергетической безопасности // Энергетическая политика. 2023. № 2 (180). DOI: 10.46920/2409-5516_2023_2180_12
  2. 2. Ильгисонис В.И., Ильин К.И., Новиков С.Г., Оленин Ю.А. О программе российских исследований в области управляемого термоядерного синтеза и плазменных технологий // Физика плазмы. 2021. Т. 47. № 11. С. 963—969. DOI: 10.31857/S0367292121110172
  3. 3. Аверин М.С., Баранова А.С., Бусалов А.А., Гнутов А.С., Ермакова И.Ю., Ляпин В.В. Алгоритм переноса поверхностной сетки при подготовке расчетных сеток для тонкостенных конструкций / Молодежь в науке: сборник докладов XXI научно-технической конференции. 2024.
  4. 4. Haan S.W., Lindl J.D., Callahan D.A., Clark D.S. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility // Physics of Plasmas (1994-present). 2011. V. 18. P. 051001. DOI: 10.1063/1.3592169
  5. 5. Harding D.R., Wittman M.D., Edgell D.H. Considerations and Requirements for Providing Cryogenic Targets for Direct-Drive Inertial Fusion Implosions at the National Ignition Facility // Fusion Science and Technology. 2013. V. 63. No. 2. P. 95—105.
  6. 6. Hamza A.V., Nikroo A., Alger E., Antipa N., Atherton L.J., Barker D., Baxamusa S., Bhandarkar S., Biesiada T., Buice E., Carr E., Castro C., Choate C., Conder A., Crippen J., Dylla-Spears R., Dzenitis E., Eddinger S., Emerich M., Fair J., Farrell M., Felker S., Florio J., Forsman A., Giraldez E., Hein N., Hoover D., Horner J., Huang H., Kozioziemski B., Kroll J., Lawson B., Letts S.A., Lord D., Mapoles E., Mauldin M., Miller P., Montesanti R., Moreno K., Parham T., Nathan B., ReynoldsJ., Sater J., Segraves K., Seugling R., Stadermann M., Strauser R., Stephens R., Suratwala T.I., Swisher M., Taylor J.S., Wallace R., Wegner P., Wilkens H., Yoxalla B. Target development for the National Ignition Campaign // Fusion science and technology. 2016. V. 69. P. 395—406.
  7. 7. Harding D.R., Ulreich J., Wittman M.D., Chapman R., Taylor C., Taylor R., Redden N.P., Lambropoulos J.C., Gram R.Q., Bonino M.J., Turner D.W. Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA // Fusion Science and Technology. 2017.
  8. 8. Swadling G.F. , Farmer W.A., Chen H., Aybar N., Rubery M.S., Schneider M.B., Liedahl D.A., Lemos N.C., Tubman E., Ross J.S., Hinkel D.E., Landen O.L., Rosen M.D., Rogers S., Newman K., Yanagisawa D., Roskopf N.,Vonhof S., Aghaian L., Mauldin M., Reichelt B.L., Kunimune J. Resolving discrepancies in bang-time predictions for ICF experiments on the NIF: Insights from the Build-A-Hohlraum Campaign // Work in progress. 2025. V 17. No. 1.
  9. 9. Abu-Shawareb H., The Indirect Drive ICF Collaboration et. al. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment // Phys. Rev. Lett. 2024. V. 132. P. 065102. https://doi.org/10.1103/PhysRevLett.132.065102.
  10. 10. LMJ & PETAL Status and first experiments // Journal of Physics: Conference Series 717. 2016. P. 012084. DOI:10.1088/1742-6596/717/1/012084
  11. 11. Miquel J.-L., Lion C., Vivini P. The Laser Mega-Joule : LMJ & PETAL status and Program Overview // Journal of Physics: Conference Series 688. 2016. P. 012067. DOI:10.1088/1742-6596/688/1/012067
  12. 12. Shaoen Jiang Feng Wang, Yongkun Ding, Shenye Liu, Jiamin Yang, Sanwei Li, Tianxuan Huang, Zhurong Cao, Zhenghua Yang, Xin Hu, Wenyong Miao, Jiyan Zhang, Zhebin Wang, Guohong Yang, Rongqing Yi, Qi Tang, Longyu Kuang, Zhichao Li, Dong Yang, Baohan Zhang. Experimental Progress of Inertial Confinement Fusion Based on ShenGuang III Laser Facility in China /Nucl. Fusion. 2018. DOI: 10.1088/1741-4326/aabdb6
  13. 13. https://lasers.llnl.gov/science/achieving-fusion-ignition. Дата обращения 29.04.25 г.
  14. 14. Wittman M.D., Bredesen D. Modeling for Direct Drive Fusion Implosions: Cryogenic Target Filling at Arbitrary Viewing Angles and Yield Prediction. Simon Narang, Sutherland High School, Pittsford, New York. November 2019.
  15. 15. Harding D.R., Wittman M.D., Redden N.P., Edgell D.H., Ulreich J. Comparison of Shadowgraphy and X-Ray Phase Contrast Methods for Characterizing a DT Ice Layer in an Inertial Confinement Fusion Target // Fusion Science and Technology. 2020. DOI: 10.1080/15361055.2020.1812990
  16. 16. Tianliang Yan, Kai Wang, Zhongming Zang, An Lu, Xiaobo Hu, Nan Chen, Huxiang Zhang, Chong Liu, Dong Liu. Compact, snapshot and triple-wavelength system for ICF target ice-layer refractive index and thickness measurement // Optics and Laser Technology. 2021. V. 134. P. 106595.
  17. 17. Lamy F., Voisin Y., Diou A., Martin M., Jeannot L., Pascal G., Hermerel C. A Model to Characterize the D-T Layer of ICF Targets by Backlit Optical Shadowgraphy // Fusion Science and Technology. 2005. V. 48. No. 3. P. 1307—1319.
  18. 18. Зарубина Е.Ю., Рогожина М.А., Чугров И.А. Получение криогенной мишени непрямого облучения с твердым слоем дейтерия // ВМУ. Серия 3. Физика. Астрономия. 2024. V. 79. No. 1. P. 2410401.
  19. 19. Зарубина Е.Ю., Рогожина М.А., Чугров И.А. Диагностика параметров слоя изотопов водорода в криогенной мишени непрямого облучения для лазерного термоядерного синтеза // ФИЗМАТ. 2024. V. 2. No. 2. P. 134—154.
  20. 20. Zarubina E.Yu., Rogozhina M.A. Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion // Physics of Atomic Nuclei. 2022. V. 5. No. 10. P. 1638—1641. DOI: 10.1134/S1063778822100659
  21. 21. Алабужев А.А., Белозерова Т.С., Хеннер В.К. Методы математической физики. Ч. II. Специальные функции. Полиномы Лежандра / Учеб.-метод. пособие. Пермь: Перм. ун-т, 2009. 76 с.
  22. 22. Борн М., Вольф Э. Основы оптики. Изд. 2-е. Перевод с английского. Главная редакция физико-математической литературы изд-ва «Наука», 1973.
  23. 23. Keisuke Iwano, Jiaqi Zhang, Akifumi Iwamoto, Yuki Iwasa, Keisuke Shigemori, Masanori Hara, Yuji Hatano, Takayoshi Norimatsu & Kohei Yamanoi. Refractive index measurements of solid deuterium–tritium // Scientifc Reports. 2022. No. 12. P. 2223. DOI: 10.1038/s41598-022-06298-1
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library