ОФНДефектоскопия Russian Journal of Nondestructive Testing

  • ISSN (Print) 0130-3082
  • ISSN (Online) 3034-4980

ВЛИЯНИЕ ФАЗОВОГО СОСТАВА И ТЕМПЕРАТУРЫ ГОМОГЕНИЗАЦИИ НА МАГНИТНЫЕ ХАРАКТЕРИСТИКИ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ СИСТЕМЫ CoCrFeNiAl

Код статьи
S30344980S0130308225100069-1
DOI
10.7868/S3034498025100069
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 10
Страницы
56-67
Аннотация
Высокоэнтропийный сплав системы CoCrFeNiAl ( = 0,3; 0,6; 0,8; 1,0) получен методом спекания порошков. Исследовано влияние температуры гомогенизации (900, 1000 и 1100 °C) на микроструктуру, фазовый состав, микротвердость и магнитные свойства сплава. Установлено, что с повышением температуры гомогенизации увеличивается микротвердость, намагниченность насыщения и максимальная магнитная проницаемость. Изменения магнитных характеристик коррелируют с изменением фазового состава. Полученные результаты подтверждают возможность использования магнитных методов для оценки изменения фазового состава в высокоэнтропийных сплавах данной системы.
Ключевые слова
высокоэнтропийный сплав система CoCrFeNiAl магнитные характеристики микроструктура фазовый состав температура гомогенизации
Дата публикации
18.08.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. V. 375—377. P. 213—218. https://doi.org/10.1016/j.msea.2003.10.257.
  2. 2. Rogachev A.S. Structure, stability, and properties of high-entropy alloys // Phys. Met. Metallogr. 2020. V. 121. P. 733—764.
  3. 3. Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. Effect of Mn and M on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // J. Alloys Compd. 2014. V. 591. P. 11—21.
  4. 4. Uporov S.A., Ryltsev R.E., Sidorov V.A., Estemirova S.K., Sterkhov E.V., Babyakin I.A., Chtchelkatchev N.M. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy // Intermetallics. 2022. V. 140. No. 3. P. 107394.
  5. 5. Zhang T., Zhao R.D., Wu F.F., Lin S.B., Jiang S.S., Huang Y.J., Chen S.H., Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy // Materials Science and Engineering: A. 2020. V. 780. P. 1—7. DOI: 10.1016/j.msea.2020.139182
  6. 6. Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable high-entropy dual-phase alloys overcome the strength ductility trade-off // Nature. 2016. V. 534. P. 227.
  7. 7. Fang Qihong, Chen Yang, Li Jia, Jiang Chao, Liu Bin, Liu Yong, Liaw Peter K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys // International Journal of Plasticity. 2019. V. 114. P. 161—173. DOI: 10.1016/j.ijplas.2018.10.014
  8. 8. Liang H., Qiao D., Miao J., Cao Z., Jiang H., Wang T. Anomalous microstructure and tribological evaluation of AlCrFeNiWO.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater // Journal of Materials Science and Technology. 2021. V. 85. P. 224—234.
  9. 9. Dada M., Popoola P., Mathe N., Pinyana S., Adeosun S., Aramide O. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys // Journal of Alloys and Compounds. 2021. V. 866. Article 158777.
  10. 10. Adomako N.K., Shin G., Park N., Park K., Kim J.H. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel // Journal of Materials Science and Technology. 2021. V. 85. P. 95—105.
  11. 11. Odeiola P.I., Babalola B.J., Afolabi A.E., Anamu U.S., Olorundaisi E., Umba M.C., Phahlane T., Ayodele O.O., Olubambi P.A. Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications // Heliyon. 2024. V. 10. No. 22.
  12. 12. Wang Q., Lu Y., Yu Q., Zhang Z. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi // Sci. Rep. 2018. V. 8. No. 1. P. 1—7.
  13. 13. Li Dongyue, Liaw Peter K., Zhang Yong, Wang Wenrui. Mechanical behavior of AlCoCrFeNi high-entropy-alloy rods in a wide temperature range // Materials Science and Engineering: A. 2025. V. 927. P. 148037.
  14. 14. Arun S., Radhika N., Saleh B. Effect of Additional Alloying Elements on Microstructure and Properties of AlCoCrFeNi High Entropy Alloy System: A Comprehensive Review // Met. Mater. Int. 2025. V. 31. P. 285—324.
  15. 15. Hillel G., Natowitz L., Sallow S., Haroush S., Pinkas M., Meshi L. Understanding the role of the constituting elements of the AlCoCrFeNi high entropy alloy through the investigation of quaternary alloys // Metals. 2020. V. 10. No. 10. P. 1275.
  16. 16. Yan X., Guo H., Yang W., Pang S., Wang Q., Liu Y., Liaw K., Zhang T. Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties // J Alloys Compd. 2021. V. 860. P.158436.
  17. 17. Guo Y., Liu L., Zhang W., Yao K., Zhao Z., Shang J., Qi J., Chen M., Zhao R., Wu F. Effects of electromagnetic pulse treatment on spinodal decomposed microstructure, mechanical and corrosion properties of AlCoCrFeNi high entropy alloy // J. Alloys Compd. 2021. V. 889. P.161676.
  18. 18. Shiratori H., Fujieda T., Yamanaka K., Koizumi Y., Kuwabara K., Kato T., Chiba A. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting // Mater. Sci. Eng. A. 2016. V. 656. P. 39—46.
  19. 19. Joseph J., Stanfor N., Hodgson P., Fabijanic D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlCoCrFeNi high entropy alloys // Journal of Alloys and Compounds. 2017. V. 726. P. 885—895. https://doi.org/10.1016/j.jallcom.2017.08.067.
  20. 20. Zhao Chendong, Li Jinshan, Liu Yudong, Wang William Yi, Kou Hongchao, Beaugnon Eric, Wang Jun. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation // J. Mater. Sci. Technol. 2021. V. 73. P. 83—90.
  21. 21. Kao Y.F., Chen S.K., Chen T.J., Chu P.C., Yeh J.W., Lin S.J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys // Journal of Alloys and Compounds. 2011. V. 509. P. 1607—1614.
  22. 22. Uporov S., Bykov V., Pryanichnikov S., Shubin A., Uporov N. Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy // Intermetallics. 2017. V. 83. P. 1—8. https://doi.org/10.1016/j.internet.2016.12.003
  23. 23. Михеев М. Н., Горкунов Э. С. Магнитные методы структурного анализа и неразрушающего контроля. М.: Наука, 1993. 252 с.
  24. 24. Горкунов Э. С., Мушников А.Н. Магнитные методы оценки упругих напряжений в ферромагнитных сталях (обзор) // Контроль. Диагностика. 2020. Т. 23. № 12. С. 4—23. DOI: 10.14489/td.2020.12.pp.004-023
  25. 25. Горкунов Э. С., Поволоцкая А.М., Задворкин С.М., Путилова (Туева) Е.А., Мушников А.Н., Базулин Е.Г., Вопилкин А.Х. Особенности поведения магнитных и акустических характеристик горячекатаной стали 08Г2Б при циклическом нагружении // Дефектоскопия. 2019. № 11. С. 21—31.
  26. 26. Кулеев В. Г., Горкунов Э. С. Механизмы влияния внутренних и внешних напряжений на коэрцитивную силу ферромагнитных сталей // Дефектоскопия. 1997. № 11. С. 3—18.
  27. 27. Mushnikov A. N., Mitropolskaya S. Yu. Influence of mechanical loading on the magnetic characteristics of pipe steels of different classes // Diagnostics, Resource and Mechanics of materials and structures. 2016. V. 4. P. 57—70. DOI: 10.17804/2410-9908.2016.4.057-070
  28. 28. Путилова Е.А., Малыгина К.Д., Горулева Л.С., Костин В.Н., Василенко О.Н., Перов В.Н. Взаимосвязь магнитных параметров со степенью рекристаллизации при отжиге предварительно деформированного никеля // Дефектоскопия. 2025. № 6. С. 38—49.
  29. 29. Перов В.Н., Михайлов Л.В., Костин В.Н., Поволоцкая А.М. Магнитные и магнитоакустические параметры оценки степени рекристаллизации и анизотропии сплава // Дефектоскопия. 2025. № 5. С. 68—74.
  30. 30. Chou H. P., Chang Y. S., Chen S. K., Yeh J. W. Microstructure, thermophysical and electrical properties in Al_CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys // Mater. Sci. Eng. B. 2009. V. 163. P. 184.
  31. 31. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. 2020. Т. 121. № 8. С. 807—841. DOI: 10.31857/S0015323020080094
  32. 32. Горкунов Э.С., Задворкин С.М., Путилова Е.А. Оценка приложенных напряжений при упругопластической деформации одноосным растяжением двухслойного композиционного материала “сталь Cr3 — сталь 08X18H10T” магнитными методами // Дефектоскопия. 2012. № 8. С. 64—76.
  33. 33. Щербинин В. Е., Горкунов Э. С. Магнитный контроль качества металлов. Екатеринбург: Изд-во УрО РАН, 1996. 263 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека