ОФНДефектоскопия Russian Journal of Nondestructive Testing

  • ISSN (Print) 0130-3082
  • ISSN (Online) 3034-4980

Идентификация и обнаружение нарушения адгезии на границе раздела стальной плиты и бетона на основе безопорной волны Лэмба

Код статьи
S30344980S0130308225080049-1
DOI
10.7868/S3034498025080049
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 8
Страницы
42-56
Аннотация
В статье предложен метод идентификации нарушения адгезии на границе раздела стальной плиты и бетона на основе безопорной волны Лэмба. Метод использует энергетический спектр Гильберта для анализа сигналов и позволяет локализовать дефекты без предварительного задания опорного сигнала. Результаты моделирования и экспериментов подтверждают эффективность метода.
Ключевые слова
граница раздела стальная плита — бетона метод обнаружения на основе безопорной волны Лэмба энергетический спектр Гильберта построение изображений
Дата публикации
27.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
70

Библиография

  1. 1. Onaizi A.M., Amran M., Tang W. et al. Radiation-shielding concrete: A review of materials, performance, and the impact of radiation on concrete properties // Journal of Building Engineering. 2024. V. 110800.
  2. 2. Yin Y., Ren Q., Lei S. et al. Mesoscopic crack pattern fractal dimension-based concrete damage identification // Engineering Fracture Mechanics. 2024. V. 296. P. 109829.
  3. 3. Li B., Chen Z., Wang S. et al. A review on the damage behavior and constitutive model of fiber reinforced concrete at ambient temperature // Construction and Building Materials. 2024. V. 412. P. 134919.
  4. 4. Zhang J., Peng L., Wen S. et al. A Review on Concrete Structural Properties and Damage Evolution Monitoring Techniques // Sensors. 2024. V. 24 (2). P. 620.
  5. 5. Xie M., Hoa S.Y., Xiao X.R. Bonding steel reinforced concrete with composites // Journal of reinforced plastics and composites. 1995. V. 14 (9). P. 949—964.
  6. 6. Abdallah S., Fan M., Rees D.W.A. Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview // Journal of Materials in Civil Engineering. 2018. V. 30 (3). P. 04018001.
  7. 7. Kucharska M., Jaskowska-Lemanska J. Properties of a bond between the steel reinforcement and the new generation concretes — a review / IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019. V. 603 (4). P. 042057.
  8. 8. Fedin K.V., Marilov O.K. Detection of hidden defects in composite material using the standing waves method // Russian Journal of Nondestructive Testing. 2024. V. 60. No. 4. P. 368—377.
  9. 9. Minghui W., Hongjun C., Alhua D. et al. A new method for wellhead device defect identification with ultrasonic signals // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 9. P. 964—976.
  10. 10. Vasil’ev A.V., Biryukov D.Y., Zatsepin A.F. Ultrasonic testing of butt joints in electric steel plates using Lamb waves // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 1. P. 11—21.
  11. 11. Luo K., Chen L., Liang W. Numerical simulation of carbon fiber reinforced polymer composite delamination damage identification using Lamb wave and filtered back-projection method // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 10. P. 917—925.
  12. 12. Wu C., Wei Q., Zhu Y. et al. Fatigue Microcracks Detection and Assessment in High-Strength Marine Steel Using Nonlinear Ultrasonic Waves: Experimental and Numerical Investigation // Russian Journal of Nondestructive Testing. 2024. V. 60. No. 7. P. 726—739.
  13. 13. Jiang Y., Han L., Wang R. et al. Quantitative detection of internal flaws of action rod based on ultrasonic technology // Russian Journal of Nondestructive Testing. 2023. V. 59 No. 2. P. 171—181.
  14. 14. Moravvej M., El-Badry M. Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring — A Critical Review and Perspective // Sensors. 2024. V. 24 (3). P. 876.
  15. 15. Alem B., Abedian A., Nasrollahi-Nasab K. Reference-free damage identification in plate-like structures using lamb-wave propagation with embedded piezoelectric sensors // Journal of Aerospace Engineering. 2016. V. 29 (6). P. 04016062.
  16. 16. Zhang L., Cheng X., Wu G. et al. Reference-free damage identification method for highway continuous girder bridges based on long-gauge fibre Bragg grating strain sensors // Measurement. 2022. V. 195. P. 111064.
  17. 17. Chen H., Ren Y., Gan S. et al. Interfacial debonding detection for steel-concrete composite structures part I: Benchmark test and signal calibration of contact and non-contact measurement / Structures. Elsevier. 2024. V. 62. P. 106123.
  18. 18. Guo C., Xu C., Xiao D. et al. Ultrasonic resonance evaluation method for deep interfacial debonding defects of multilayer adhesive bonded materials // Reviews on Advanced Materials Science. 2024. V. 63 (1). P. 20230172.
  19. 19. Bu C.W., Zhao B., Liu T. et al. Infrared thermal imaging detection of debonding defects in carbon fiber reinforced polymer based on pulsed thermal wave excitation // Thermal Science. 2020. V. 24 (6 Part B). P. 3887—3892.
  20. 20. Li Y., Liu X., Chen G. et al. Study on interfacial debonding stress and damage mechanisms of C/ SiC composites using acoustic emission // Ceramics International. 2021. V. 47 (4). P. 4512—4520.
  21. 21. Lai G.D., Sang L.P., Bian Y.L. et al. Interfacial debonding and cracking in a solid propellant composite under uniaxial tension: An in situ synchrotron X-ray tomography study // Composites Science and Technology. 2024. P. 110743.
  22. 22. Alleyne D.N., Cawley P. The interaction of Lamb waves with defects // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992. V. 39 (3). P. 381—397.
  23. 23. Crozford A.J., Wilcox P.D., Drinkwater B.W., Konstantinidis G. Strategies for guided-wave structural health monitoring. Proceedings of the Royal Society A: Mathematical // Physical and Engineering Sciences. 2007. V. 463 (2087). P. 2961—2981.
  24. 24. Michaels J.E., Lee S.J., Michaels T.E. Enhanced differential methods for guided wave phased array imaging // Journal of Nondestructive Evaluation. 2011.V. 30 (1). P. 20—30.
  25. 25. Li L., Wang F., Shang F. et al. Energy spectrum analysis of blast waves based on an improved Hilbert—Huang transform // Shock Waves. 2017. V. 27. P. 487—494.
  26. 26. Olhede S., Walden A.T. The Hilbert spectrum via wavelet projections // Proceedings of the royal society of London. Series A: mathematical, physical and engineering sciences. 2004. V. 460 (2044). P. 955—975.
  27. 27. Su Z., Ye L., Su Z. et al. Fundamentals and analysis of lamb waves // Identification of Damage Using Lamb Waves: From Fundamentals to Applications. 2009. P. 15—58.
  28. 28. Tian Z., Yu L. Lamb wave frequency—wavenumber analysis and decomposition // Journal of Intelligent Material Systems and Structures. 2014. V. 25 (9). P. 1107—1123.
  29. 29. Alleyne D.N., Cawley P. Optimization of Lamb wave inspection techniques // Ndt & E International. 1992. V. 25 (1). P. 11—22.
  30. 30. Kessler S.S., Spearing S.M., Soulis C. Damage detection in composite materials using Lamb wave methods // Smart materials and structures. 2002. V. 11 (2). P. 269.
  31. 31. Yeun C.M., Sohn H., Lin H.J. et al. Reference-free delamination detection using Lamb waves // Structural Control and Health Monitoring. 2014. V. 21 (5). P. 675—684.
  32. 32. Chen S., Wang M., Wang Y. Feature extraction of pulse diagnosis signal based on Hilbert yellow transform / Optics in Health Care and Biomedical Optics XI. SPIE. 2021. V. 11900. P. 138—146.
  33. 33. Cheng J., Yu D., Tang J. et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis // Mechanism and Machine Theory. 2008. V. 43 (6). P. 712—723.
  34. 34. Zhao X., Royer R.L., Owens S.E. et al. Ultrasonic Lamb wave tomography in structural health monitoring // Smart Materials and Structures. 2011. V. 20 (10). P. 105002.
  35. 35. Leonard K.R., Malyarenko E.V., Hinders M.K. Ultrasonic Lamb wave tomography // Inverse problems. 2002. V. 18 (6). P. 1795.
  36. 36. Zhang W., Su C., Zhang Y. et al. Locating and imaging composite damage based on frequency spectrum detection of lamb waves // Frontiers in Physics. 2022. V. 10. P. 1073206.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека