- Код статьи
- S30344980S0130308225080049-1
- DOI
- 10.7868/S3034498025080049
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 8
- Страницы
- 42-56
- Аннотация
- В статье предложен метод идентификации нарушения адгезии на границе раздела стальной плиты и бетона на основе безопорной волны Лэмба. Метод использует энергетический спектр Гильберта для анализа сигналов и позволяет локализовать дефекты без предварительного задания опорного сигнала. Результаты моделирования и экспериментов подтверждают эффективность метода.
- Ключевые слова
- граница раздела стальная плита — бетона метод обнаружения на основе безопорной волны Лэмба энергетический спектр Гильберта построение изображений
- Дата публикации
- 27.06.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 66
Библиография
- 1. Onaizi A.M., Amran M., Tang W. et al. Radiation-shielding concrete: A review of materials, performance, and the impact of radiation on concrete properties // Journal of Building Engineering. 2024. V. 110800.
- 2. Yin Y., Ren Q., Lei S. et al. Mesoscopic crack pattern fractal dimension-based concrete damage identification // Engineering Fracture Mechanics. 2024. V. 296. P. 109829.
- 3. Li B., Chen Z., Wang S. et al. A review on the damage behavior and constitutive model of fiber reinforced concrete at ambient temperature // Construction and Building Materials. 2024. V. 412. P. 134919.
- 4. Zhang J., Peng L., Wen S. et al. A Review on Concrete Structural Properties and Damage Evolution Monitoring Techniques // Sensors. 2024. V. 24 (2). P. 620.
- 5. Xie M., Hoa S.Y., Xiao X.R. Bonding steel reinforced concrete with composites // Journal of reinforced plastics and composites. 1995. V. 14 (9). P. 949—964.
- 6. Abdallah S., Fan M., Rees D.W.A. Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview // Journal of Materials in Civil Engineering. 2018. V. 30 (3). P. 04018001.
- 7. Kucharska M., Jaskowska-Lemanska J. Properties of a bond between the steel reinforcement and the new generation concretes — a review / IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019. V. 603 (4). P. 042057.
- 8. Fedin K.V., Marilov O.K. Detection of hidden defects in composite material using the standing waves method // Russian Journal of Nondestructive Testing. 2024. V. 60. No. 4. P. 368—377.
- 9. Minghui W., Hongjun C., Alhua D. et al. A new method for wellhead device defect identification with ultrasonic signals // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 9. P. 964—976.
- 10. Vasil’ev A.V., Biryukov D.Y., Zatsepin A.F. Ultrasonic testing of butt joints in electric steel plates using Lamb waves // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 1. P. 11—21.
- 11. Luo K., Chen L., Liang W. Numerical simulation of carbon fiber reinforced polymer composite delamination damage identification using Lamb wave and filtered back-projection method // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 10. P. 917—925.
- 12. Wu C., Wei Q., Zhu Y. et al. Fatigue Microcracks Detection and Assessment in High-Strength Marine Steel Using Nonlinear Ultrasonic Waves: Experimental and Numerical Investigation // Russian Journal of Nondestructive Testing. 2024. V. 60. No. 7. P. 726—739.
- 13. Jiang Y., Han L., Wang R. et al. Quantitative detection of internal flaws of action rod based on ultrasonic technology // Russian Journal of Nondestructive Testing. 2023. V. 59 No. 2. P. 171—181.
- 14. Moravvej M., El-Badry M. Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring — A Critical Review and Perspective // Sensors. 2024. V. 24 (3). P. 876.
- 15. Alem B., Abedian A., Nasrollahi-Nasab K. Reference-free damage identification in plate-like structures using lamb-wave propagation with embedded piezoelectric sensors // Journal of Aerospace Engineering. 2016. V. 29 (6). P. 04016062.
- 16. Zhang L., Cheng X., Wu G. et al. Reference-free damage identification method for highway continuous girder bridges based on long-gauge fibre Bragg grating strain sensors // Measurement. 2022. V. 195. P. 111064.
- 17. Chen H., Ren Y., Gan S. et al. Interfacial debonding detection for steel-concrete composite structures part I: Benchmark test and signal calibration of contact and non-contact measurement / Structures. Elsevier. 2024. V. 62. P. 106123.
- 18. Guo C., Xu C., Xiao D. et al. Ultrasonic resonance evaluation method for deep interfacial debonding defects of multilayer adhesive bonded materials // Reviews on Advanced Materials Science. 2024. V. 63 (1). P. 20230172.
- 19. Bu C.W., Zhao B., Liu T. et al. Infrared thermal imaging detection of debonding defects in carbon fiber reinforced polymer based on pulsed thermal wave excitation // Thermal Science. 2020. V. 24 (6 Part B). P. 3887—3892.
- 20. Li Y., Liu X., Chen G. et al. Study on interfacial debonding stress and damage mechanisms of C/ SiC composites using acoustic emission // Ceramics International. 2021. V. 47 (4). P. 4512—4520.
- 21. Lai G.D., Sang L.P., Bian Y.L. et al. Interfacial debonding and cracking in a solid propellant composite under uniaxial tension: An in situ synchrotron X-ray tomography study // Composites Science and Technology. 2024. P. 110743.
- 22. Alleyne D.N., Cawley P. The interaction of Lamb waves with defects // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992. V. 39 (3). P. 381—397.
- 23. Crozford A.J., Wilcox P.D., Drinkwater B.W., Konstantinidis G. Strategies for guided-wave structural health monitoring. Proceedings of the Royal Society A: Mathematical // Physical and Engineering Sciences. 2007. V. 463 (2087). P. 2961—2981.
- 24. Michaels J.E., Lee S.J., Michaels T.E. Enhanced differential methods for guided wave phased array imaging // Journal of Nondestructive Evaluation. 2011.V. 30 (1). P. 20—30.
- 25. Li L., Wang F., Shang F. et al. Energy spectrum analysis of blast waves based on an improved Hilbert—Huang transform // Shock Waves. 2017. V. 27. P. 487—494.
- 26. Olhede S., Walden A.T. The Hilbert spectrum via wavelet projections // Proceedings of the royal society of London. Series A: mathematical, physical and engineering sciences. 2004. V. 460 (2044). P. 955—975.
- 27. Su Z., Ye L., Su Z. et al. Fundamentals and analysis of lamb waves // Identification of Damage Using Lamb Waves: From Fundamentals to Applications. 2009. P. 15—58.
- 28. Tian Z., Yu L. Lamb wave frequency—wavenumber analysis and decomposition // Journal of Intelligent Material Systems and Structures. 2014. V. 25 (9). P. 1107—1123.
- 29. Alleyne D.N., Cawley P. Optimization of Lamb wave inspection techniques // Ndt & E International. 1992. V. 25 (1). P. 11—22.
- 30. Kessler S.S., Spearing S.M., Soulis C. Damage detection in composite materials using Lamb wave methods // Smart materials and structures. 2002. V. 11 (2). P. 269.
- 31. Yeun C.M., Sohn H., Lin H.J. et al. Reference-free delamination detection using Lamb waves // Structural Control and Health Monitoring. 2014. V. 21 (5). P. 675—684.
- 32. Chen S., Wang M., Wang Y. Feature extraction of pulse diagnosis signal based on Hilbert yellow transform / Optics in Health Care and Biomedical Optics XI. SPIE. 2021. V. 11900. P. 138—146.
- 33. Cheng J., Yu D., Tang J. et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis // Mechanism and Machine Theory. 2008. V. 43 (6). P. 712—723.
- 34. Zhao X., Royer R.L., Owens S.E. et al. Ultrasonic Lamb wave tomography in structural health monitoring // Smart Materials and Structures. 2011. V. 20 (10). P. 105002.
- 35. Leonard K.R., Malyarenko E.V., Hinders M.K. Ultrasonic Lamb wave tomography // Inverse problems. 2002. V. 18 (6). P. 1795.
- 36. Zhang W., Su C., Zhang Y. et al. Locating and imaging composite damage based on frequency spectrum detection of lamb waves // Frontiers in Physics. 2022. V. 10. P. 1073206.