ОФНДефектоскопия Russian Journal of Nondestructive Testing

  • ISSN (Print) 0130-3082
  • ISSN (Online) 3034-4980

Магнитные и магнитоакустические параметры оценки степени рекристаллизации и анизотропии сплава

Код статьи
S30344980S0130308225050076-1
DOI
10.7868/S3034498025050076
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 5
Страницы
68-74
Аннотация
Исследовано влияние вариации температуры отжига на магнитные и магнитоакустические свойства холоднодеформированного сплава 97 % Ni, 3% Fe. Исследование микроструктуры сплава никель—железо показало наличие текстуры прокатки до температур отжига порядка 500 ºС. При дальнейшем увеличении температуры отжига исследованного сплава в результате рекристаллизации исчезает текстура и значительно уменьшается анизотропия его магнитных и магнитоакустических параметров. Сопоставлена чувствительность магнитных и магнитоакустических параметров к вызванной прокаткой анизотропии сплава никель—железо. Показано, что дифференциальная магнитная проницаемость, измеряемая с помощью аппаратно-программной системы DIUS-1.21M, является наиболее чувствительным к анизотропии параметром.
Ключевые слова
сплав никель—железо дифференциальная магнитная проницаемость магнитоакустические характеристики динамическая магнитострикционная чувствительность лазерная интерферометрия
Дата публикации
01.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
42

Библиография

  1. 1. Клюев В.В. Неразрушающий контроль / Справочник в 8 т. М.: Машиностроение, 2008.
  2. 2. Костин В.Н., Перов В.Н., Михайлов Л.В., Сербин Е.Д., Василенко О.Н. Магнитный анализ процессов рекристаллизации при отжиге холоднодеформированного никеля // Дефектоскопия. 2022. № 11. С. 23—31.
  3. 3. Гуляев А.П. Металловедение / Учебник для вузов. 6-е изд., перер. и доп. М.: Металлургия, 1986. 544 с.
  4. 4. Бусько В.Н., Осипов А.А. Применение магнитошумового метода для контроля анизотропии ферромагнитных материалов // Приборы и методы измерений. 2019. № 3. С. 281—292.
  5. 5. Кулагин В.Н., Осипов А.А., Пиунов В.Д. Анизотропия листового проката низкоуглеродистых сталей и оценка ее неоднородности / Материалы 15-й Международной научно-технической конференции «Приборостроение-2022». 2022. С. 343—344.
  6. 6. Ригмант М.Б., Кочнев А.В., Казанцева Н.В., Корх Ю.В., Корх М.К. Выявление магнитной анизотропии в аустенитной стали 09Х17Н5Ю после деформации прокаткой / Сборник статей 8-й Международной научно-технической конференции «Современные методы и приборы контроля качества и диагностики состояния объектов». 2022. С. 224—229.
  7. 7. Мушников А.Н., Поволоцкая А.М., Задворкин С.М., Горулева Л.С., Путилова Е.А. Влияние упругопластического деформирования по схеме двухосного растяжения на магнитные характеристики никеля // Дефектоскопия. 2023. № 11. С. 3—16.
  8. 8. Ничипурук А.П., Сташков А.Н., Огнева М.С., Королев А.В., Осипов А.А. Наведенная магнитная анизотропия в пластически деформированных растяжением пластинах из низкоуглеродистой стали // Дефектоскопия. 2015. № 10. С. 19—23.
  9. 9. Сербин Е.Д., Костин В.Н. О возможности оценки магнитострикционных характеристик объемных ферромагнетиков по их магнитным свойствам // Дефектоскопия. 2019. № 5. С. 31—36.
  10. 10. Сербин Е.Д., Костин В.Н. Программа расчета критических полей, определяемых формой петли магнитного гистерезиса и кривой намагничивания ферромагнитных материалов “HklHkc”: № 2023660256. Заявл. 24.05.2023. Опубликовано 24.05.2023. Заявитель и правообладатель ИФМ УрО РАН. 1 c.
  11. 11. Костин В.Н., Василенко О.Н., Бызов А.В. Мобильная аппаратно-программная система магнитной структуроскопии DIUS-1.15M // Дефектоскопия. 2018. № 9. С. 47—53.
  12. 12. Kostin V.N., Serbin E.D., Vladimirov A.P., Rogova E.A. Non-contact measurement of magnetostriction of ferromagnetic materials by laser interferometry and speckle interferometry // Procedia Structural Integrity. 2023. V. 50. P. 151—154.
  13. 13. Serbin E.D., Perov V.N., Kostin V.N. Non-Contact Measurement of the Dynamic Magnetostriction Parameters of Ferromagnets // Diagnostics, Resource and Mechanics of materials and structures. 2023. V. 6. P. 121—131.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека